

S A Group

Energy Efficiency in Serbia General Remarks

Energy Efficiency in Serbia

- → Implementation of EU EE scheme
- → adoption of secondary legislation on energy management done
- \rightarrow Priority in full transposition of EU Directive on EE
 - Legal Framework for energy performance contracting in place
 - ESCO projects at an early stage
- → Large number of buildings with high energy consumption leads to good opportunities for reduction of energy consumption
- → Low energy prices affect financial feasibility of investments in EE projects

Energy Efficiency Financing in Serbia

→ For 2020 EUR 4,25 Mio dedicated to EE projects by gvt. Budget mainly to support EE measures of local governments

Budget Fund for EE in Serbia:

- EUR 1,4 Mio approved annually by government
- One project-one municipality principle
- → Public Investment Management Office supports local governments related to reconstruction and improvement of public facilities
- → Plans to launch a private household EE Fund in 2021 for co-financing of EE projects
 - Planned size of the Fund is EUR 21,6 Mio
 - financed by EE fees paid by citizens

Energy Efficiency in Uzice

- → City of Uzice has allocated funds for EE projects in private households mainly focused on purchase of eco friendly boilers and thermal insulation
- ightarrow In 2020 200 projects with EUR 334.000,- subsidized
- \rightarrow EE Budget for 2021 is EUR 375.000,-

Published by Serbia-business.eu on Dec. 3rd, 2020

European EE Financing Mechanisms

Interreg IPA Funds:

- \rightarrow Allignment with EU EE aquis
- → Supports pilot & demo projects on innovative technologies and EE
- → Serbia received > EUR 300 Mio between 2014-2020
- \rightarrow New Tool for the period 2021-2027 IPA III

WeBSEFF-Western Balkans Sustainable Energy Financing Facility:

- → EBRD Financing Facility providing credit lines to Partner banks in order to finance investments in EE
- → Available for Municipalities, ESCOs, Municipal Service Providers up to EUR 2,5 Mio
- \rightarrow Technology cutting CO² emmisisons by >20%
- → Retrofitting buildings making them >30% energy efficient

S A Group

Economic Evaluation of 3 Public Buildings in Uzice

S A Group

Business Considerations

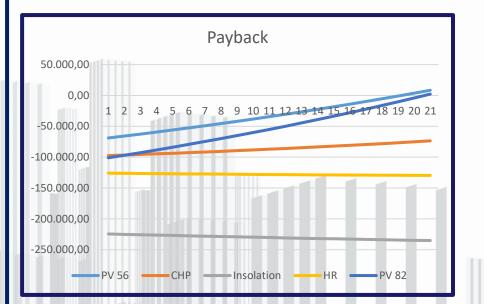
General Remarks:

- Project Period: 20 years
- Estimated Price Increase for Energy: 2% p.a.
- Calculation Interest Rate: 1,5% p.a.
- \rightarrow Considered CO² and business opportunity

Impact on Financial Feasibility:

- Very low energy, esp. electricity price
- Utilization of Buildings
- High Conversion Factor for electricity drives CO² savings potential

 \rightarrow 5 measures defined incl. PV in 2 different sizes


Basic	Data:
0010	

	Baseline	Insulation	HR	СНР	PV 56	PV 82
Investment		224.600	126.000	97.500	69.020	101.150
Energy Cost/a	16.606,59	13.836,84	14.958,71	14.235,24	12.437,08	10.913,99
CO ² changes t/a		-9,9	-5,9	-48,9	-54,6	-74,9
CO ² changes %		-8,35	-4,98	-41,27	-46,08	-62,95
Payback Period years		n/a	n/a	51,4	18,2	19,7

Financial Aspects

- Insolation, HR and CHP do not make economical sense
- PV as only possibility to reach positive financial results within the 20 years project period – PV electricity production during daytime does not correspond to hightest need in the evening for performances
- Insulation and HR require highest investment, but do not deliver positive financial results

S A Group

CO² Aspects

- PV and CHP and deliver good
 CO² reduction opportunity
- Insulation and HR deliver low results only

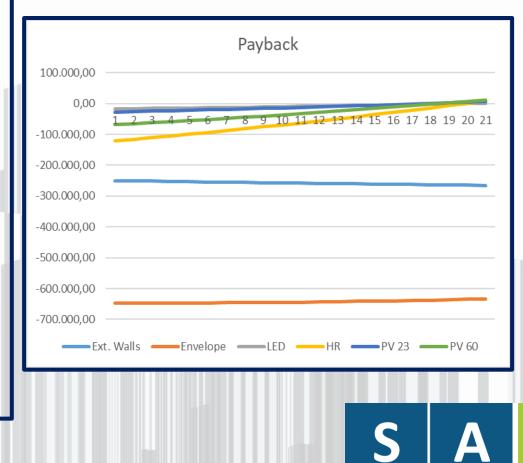
G

- → Low utilization of the building has significant consequences for the sustainability of EE measures
- → Both PV measures lead to positive financial results during the project period and show the largest CO² reductions
- → Most of the produced electricity would be sent to the grid due to inbalance of production and electricity demand
- → Other measures are financially not feasibile within the project period
 - CO² reduction potential of insulation measures are relatively small although represent higher investments than PV

 \rightarrow 6 measures defined incl. 2 different PV sizes

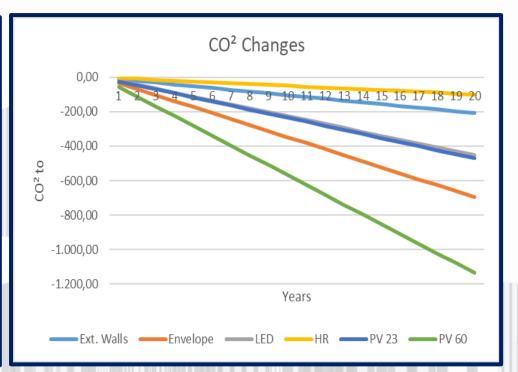
Basic Data:

	Baseline	Ext. Walls	Envelope	LED	HR	PV 23	PV 60
Investment		250.000,00	647.622,40	17.315,00	121.205,00	27.540,00	69.020,00
Energy Cost/a	32.518,40	29.601,74	22.705,30	31.534,31	25.424,81	30.728,44	28.183,58
CO ² changes t/a		-10,4	-34,8	-22,6	-5	-23,5	-56,8
CO ² changes %		-6,24	-20,89	-13,57	-3,00	-14,11	-34,09
Payback Period years		n/a	92,2	19,5	18,8	16,8	17,5


G

ro

 \mathbf{O}


Financial Aspects

- Insulation of external Walls and the whole envolope requires significant investment and is not financially feasible
- HR and PV reach slight positive results within the 20 years period
- PV efficiency impacted by school close during summer time

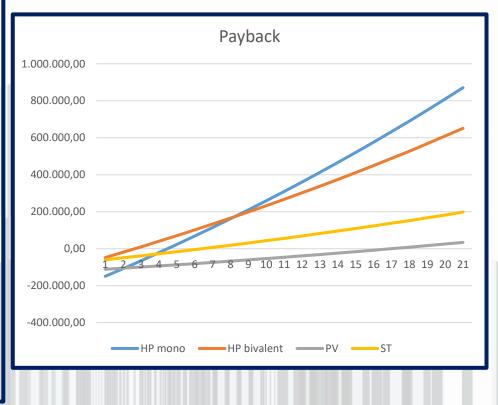
CO² Aspects

- Hightest impact reached with PV or full envelope insulation
- LED reaches similar CO² reduction as the smaller PV installation with much smaller investment
- HR and Ext. Walls insulation lead to a minor CO² reduction only

- → much higher heating energy than electrial energy needed due to functionality
- → Summer school beak limits PV opportunity for own consumption
- → Insulation Measures require significant investment compared to other options
- → Full envelope insulation delivers best CO² reduction opportunity, but without financial feasibility
- → LED represents the smallest investment and would reduce CO² significantly with a financial feasibility within the project period
- → Further reductions in CO² could be reached with a comination of measures, e.g. HR, LED and PV 23 and representing financial

feasibility within the project period

 \rightarrow 4 measures defined


Basic Data:

	and the second				
	Baseline	HP mono	HP bivalent	PV	ST
Investment		150.000,00	48.000,00	111.690,00	60.000,00
Energy Cost/a	125.124,80	80.974,32	95.669,48	117.526,41	113.664,80
CO ² changes t/a		136,9	91,3	-99,5	-32,5
CO ² changes %		14,82	9,89	-10,77	-3,52
Payback Period years		3,5	1,7	16	5,4

Financial Aspects

- All 4 measures reach financial feasibility within the 20 years period
- Both HPs show very good results with HP monovalent needing the largest investment and HP bivalent representing the shortest payback period of all investments

CO² Aspects

- Swimming pool requires large amount of heating
- CO² reduction potential relatively low due to electricity having a much higher conversion factor than heat from DH Uzice
- Both HP measures even increase CO² due to increased need of electricity
- PV show best results in CO² reduction, followed by ST

- \rightarrow EE measures show best financial results of all 3 buildings
- → CO² reduction opportunity limited due to high electricity conversion factor
- ightarrow HP bivalent could be combined with PV
 - HP leads to large cost reduction
 - PV offsets CO² increase

